
Rafiki: ML as an
Analytics Service

System

Authored by Wang et al.

Presented by Varshanth R Rao

Agenda
1) Why Rafiki?

2) Model Training
› Model Selection
› Distributed Hyperparameter Tuning

3) Model Inference

4) Experiments & Analysis

5) Conclusions

6) Discussion

2

1. WHY RAFIKI?
The Rise of Advanced Analytics

3

Big Data Sources
- Product/Service Reviews
- Device Generated Content
- Uploaded media:

Images/Videos

Complex Analytics
- Sentiment Analysis
- Content Filtering
- Image classification/Object

Detection/Image
Segmentation/Video Analysis

1. WHY RAFIKI?
The Problem

4

1) Expertise Knowledge Required to
train ML algorithms to data and
integrate with UDFs

2) Use of external cloud services (AWS,
Azure, GCP) hinders flexibility to use
own data (for training) or own
customized model for solving
problems

3) Numerous knobs: Hyperparameters
(Number of layers, learning rate etc.)

1. WHY RAFIKI?
Non ML Users be like..

5

1. WHY RAFIKI?
Enter Rafiki….

6

1. WHY RAFIKI?
Enter Rafiki….

7

Model
Selection

Model
Training

Model
Inference

1) Dataset

2) Training Config

Model Deployment

Rafiki

Resources

Rafiki Overview:

- Users configure training/inference
jobs through RESTFul API/SDK

- For each task, Rafiki provides built-in
models (ML Framework agnostic)

- Users can monitor the training job

- Parameters of the trained model are
stored in distributed systems

- Users deploy the trained model

8

9

Model
Selection

Model
Training

Model
Inference2.

10

Model
Selection

Model
Training

Model
Inference2.

Hyperparameter Tuning:

11

Model
Selection

Model
Training

Model
Inference2.

Distributed Tuning
1) Master iterates over hyperspace and
distributes trial to workers

2) Worker trains model with passed
hyperspace & reports back to master

3) Trial advisor on master generates
next trial

4) Master stops when there no more
trials or stopping criteria is satisfied

5) Best parameters stored in the
parameter server

- Uses concept of pretraining to

initialize new trials with parameters

of existing well performing trials

from other workers

- Also activated by α-greedy

strategy to solve the problem of

bad parameter initialization

Collaborative Tuning

12

Model
Selection

Model
Training

Model
Inference3.

S = Request List

τ = Latency Requirement

l(s) = latency of single inference

› Larger architectures/Ensembles -> Better Accuracy
-> Larger Latency

› Goal: Take advantage of Parallelism using GPUs using
larger batch size for inference

› Overall idea is to allow l(s) to be at max τ in an effort to
maximize the batch size

13

Model
Selection

Model
Training

Model
Inference3.

Single Inference Model

1) Read requests from request queue

2) If the number of requests in queue is
larger than max batch size Bmax, then
service Bmax requests (older first)

3) If the sum of the time required to
perform inference on current batch
and the waiting time to fill the next

best max batch size is greater than τ,

service the current request queue

- Assigns a reward function for

prediction accuracy while

penalizing overdue requests

- State: feature vector representing

inference time of each model &

waiting time of all requests in

queue

- Action: decide batch size & model

selection

Multiple Inference Model

4. Experiments & Evaluation

Deployment

- Kubernetes managed
docker containers

- Dockers represent
new models,
hyperparameter tuning
algos, ensemble
methods, application
code & libraries

Storage & Distribution

- Data nodes using HDFS
stores datasets

- Parameter server with
caching used for storing
models

- Nodes (dockers) of the
same job are located on the
same machine to avoid
network communication

Experimental Setup

- 3 machine topology

- NVIDIA 1080Ti GPU

- 64 GB RAM

- Training Study:
CIFAR10 Dataset

- Inference Study:
ImageNet Dataset

14

4. Experiments & Evaluation:
Hyperparameter Tuning

- CoStudy yields better
accuracy

- CoStudy conducts more
trials at higher accuracy
levels i.e. does not waste
trials on low accuracy
hyperparameters

- Bayesian Optimization
is a better TrialAdvisor

- Execution time
decreased as number of
workers increased

15

4. Experiments & Evaluation:
Inference

Setup

- Model the service request policy using a sine function

- Modulates between high (dense) and low (sparse) service request densities

Single Inference Model

- RL algorithm performs similar
to greedy when rate is high and
better when rate is low (RL
services overdue slow filling
queues)

16

Multiple Inference Models

- Greedy algorithm accuracy remains
constant / within consistent band

- RL algorithm accuracy in the same
range as Greedy when rate is high but
higher when the arrival rate is low

- Overdue requests significantly lesser
using RL

5. Conclusions

17

Why Rafiki?

Decouples DB tasks
from analytics
complexities

Handles training &
inference services so
users can concentrate
on application logic

Model Training

Model selection:
Tasks -> Algo Map

Distributed
Hyperparameter
Tuning

Collaborative Tuning

Model Inference

Use of batch size to
parallelize inference

Latency-Accuracy
Tradeoff

Multiple Inference
Models: Request Driven
Model Selection

Key Takeaways:

Rafiki provides a framework agnostic abstraction to use
ML/DL algos in applications without having to worry
about the burdens of algorithm choice and training
difficulties

Rafiki provides requirement driven model selection &
distributed hyperspace searching capability to extract the
most from the models

18

Light Note: Why do they name the system Rafiki??

Looking Ahead: AaaS
1) In-memory models to service inference requests: Challenges (Model complexity, Limited
GPU Memory, etc.)

2) 2 Different directions: Mobile/Integrated AI Chips vs On Cloud AaaS

Paper Specific
1) Authors pointed out lack of ability of using own model with external cloud services but
they also do not provide the ability to use customized models

2) Training & inference jobs are distributed across nodes but a single job (training/inference
task) is still on 1 machine -> Not using multiple GPUs or multiple machines to take advantage
of H/W resources

3) Why do the authors train on such a small dataset (CIFAR10) while inferencing on a large
dataset (ImageNet)? What about other complicated tasks like object detection, sentiment
analysis etc.? Experimentation seems inadequate.

19

5. Discussion

THANKS!

20

