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1. WHY RAFIKI?
The Rise of Advanced Analytics
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Big Data Sources
- Product/Service Reviews
- Device Generated Content
- Uploaded media: 

Images/Videos

Complex Analytics
- Sentiment Analysis
- Content Filtering
- Image classification/Object 

Detection/Image 
Segmentation/Video Analysis



1. WHY RAFIKI?
The Problem
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1) Expertise Knowledge Required to 
train ML algorithms to data and 
integrate with UDFs

2) Use of external cloud services (AWS, 
Azure, GCP)  hinders flexibility to use 
own data (for training) or own 
customized model for solving 
problems

3) Numerous knobs: Hyperparameters 
(Number of layers, learning rate etc.)



1. WHY RAFIKI?
Non ML Users be like..
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1. WHY RAFIKI?
Enter Rafiki….
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1. WHY RAFIKI?
Enter Rafiki….
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Model 
Selection

Model 
Training

Model 
Inference

1) Dataset

2) Training Config

Model Deployment

Rafiki

Resources



Rafiki Overview:

- Users configure training/inference 
jobs through RESTFul API/SDK

- For each task, Rafiki provides built-in 
models (ML Framework agnostic)

- Users can monitor the training job

- Parameters of the trained model are 
stored in distributed systems

- Users deploy the trained model
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Model 
Selection

Model 
Training

Model 
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Hyperparameter Tuning:
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Model 
Selection

Model 
Training

Model 
Inference2.

Distributed Tuning
1) Master iterates over hyperspace and 
distributes trial to workers

2) Worker trains model with passed 
hyperspace & reports back to master

3) Trial advisor on master generates 
next trial

4) Master stops when there no more 
trials or stopping criteria is satisfied

5) Best parameters stored in the 
parameter server

- Uses concept of pretraining to 

initialize new trials with parameters 

of existing well performing trials 

from other workers

- Also activated by α-greedy 

strategy to solve the problem of 

bad parameter initialization

Collaborative Tuning
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S = Request List 

τ = Latency Requirement

l(s) = latency of single inference

› Larger architectures/Ensembles -> Better Accuracy
-> Larger Latency

› Goal: Take advantage of Parallelism using GPUs using 
larger batch size for inference

› Overall idea is to allow l(s) to be at max τ in an effort to 
maximize the batch size
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Model 
Selection

Model 
Training

Model 
Inference3.

Single Inference Model

1) Read requests from request queue

2) If the number of requests in queue is 
larger than max batch size Bmax, then 
service Bmax requests (older first)

3) If the sum of the time required to 
perform inference on current batch 
and the waiting time to fill the next 

best max batch size is greater than τ, 

service the current request queue

- Assigns a reward function for 

prediction accuracy while 

penalizing overdue requests

- State: feature vector representing 

inference time of each model & 

waiting time of all requests in 

queue

- Action: decide batch size & model 

selection

Multiple Inference Model



4. Experiments & Evaluation

Deployment

- Kubernetes managed 
docker containers

- Dockers represent 
new models, 
hyperparameter tuning 
algos, ensemble 
methods, application 
code & libraries

Storage & Distribution

- Data nodes using HDFS 
stores datasets

- Parameter server with 
caching used for storing 
models

- Nodes (dockers) of the 
same job are located on the 
same machine to avoid 
network communication

Experimental Setup

- 3 machine topology

- NVIDIA 1080Ti GPU

- 64 GB RAM

- Training Study: 
CIFAR10 Dataset

- Inference Study: 
ImageNet Dataset
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4. Experiments & Evaluation:
Hyperparameter Tuning

- CoStudy yields better 
accuracy

- CoStudy conducts more 
trials at higher accuracy 
levels i.e. does not waste 
trials on low accuracy 
hyperparameters

- Bayesian Optimization 
is a better TrialAdvisor

- Execution time 
decreased as number of 
workers increased
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4. Experiments & Evaluation:
Inference 

Setup

- Model the service request policy using a sine function

- Modulates between high (dense) and low (sparse) service request densities

Single Inference Model

- RL algorithm performs similar 
to greedy when rate is high and 
better when rate is low (RL 
services overdue slow filling 
queues)
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Multiple Inference Models

- Greedy algorithm accuracy remains 
constant / within consistent band

- RL algorithm accuracy in the same 
range as Greedy when rate is high but 
higher when the arrival rate is low

- Overdue requests significantly lesser 
using RL



5. Conclusions
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Why Rafiki?

Decouples DB tasks 
from analytics 
complexities

Handles training & 
inference services so 
users can concentrate 
on application logic

Model Training

Model selection: 
Tasks -> Algo Map

Distributed 
Hyperparameter 
Tuning

Collaborative Tuning

Model Inference

Use of batch size to 
parallelize inference

Latency-Accuracy 
Tradeoff

Multiple Inference 
Models: Request Driven 
Model Selection



Key Takeaways:

Rafiki provides a framework agnostic abstraction to use
ML/DL algos in applications without having to worry
about the burdens of algorithm choice and training
difficulties

Rafiki provides requirement driven model selection &
distributed hyperspace searching capability to extract the
most from the models
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Light Note: Why do they name the system Rafiki??

Looking Ahead: AaaS
1) In-memory models to service inference requests: Challenges (Model complexity, Limited 
GPU Memory, etc.)

2) 2 Different directions: Mobile/Integrated AI Chips vs On Cloud AaaS

Paper Specific
1) Authors pointed out lack of ability of using own model with external cloud services but 
they also do not provide the ability to use customized models

2) Training & inference jobs are distributed across nodes but a single job (training/inference 
task) is still on 1 machine -> Not using multiple GPUs or multiple machines to take advantage 
of H/W resources

3) Why do the authors train on such a small dataset (CIFAR10) while inferencing on a large 
dataset (ImageNet)? What about other complicated tasks like object detection, sentiment 
analysis etc.? Experimentation seems inadequate.
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5. Discussion



THANKS!
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